

## DEPARTMENT OF FOOD SCIENCE AND TECHNOLOGY

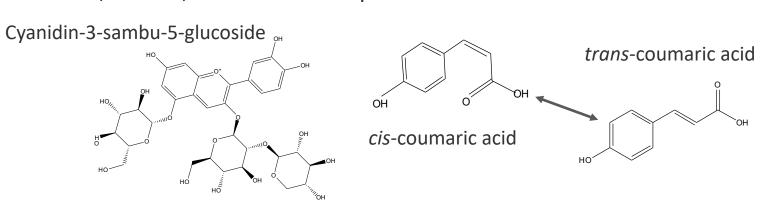
# Improving colorimetric properties and stability of acylated anthocyanins through UV irradiation



Yucheng Zhou, M. Monica Giusti

### **ABSTRACT**

Anthocyanin-based food colorants are usually acylated with hydroxy-cinnamic acids, which occur in nature predominantly in the *trans*-configuration, with *cis*-configuration rarely found. The *trans*- and *cis*-isomers have different colorimetric properties and stability. *Trans*-isomers can isomerize to *cis* under UV irradiation in methanol.

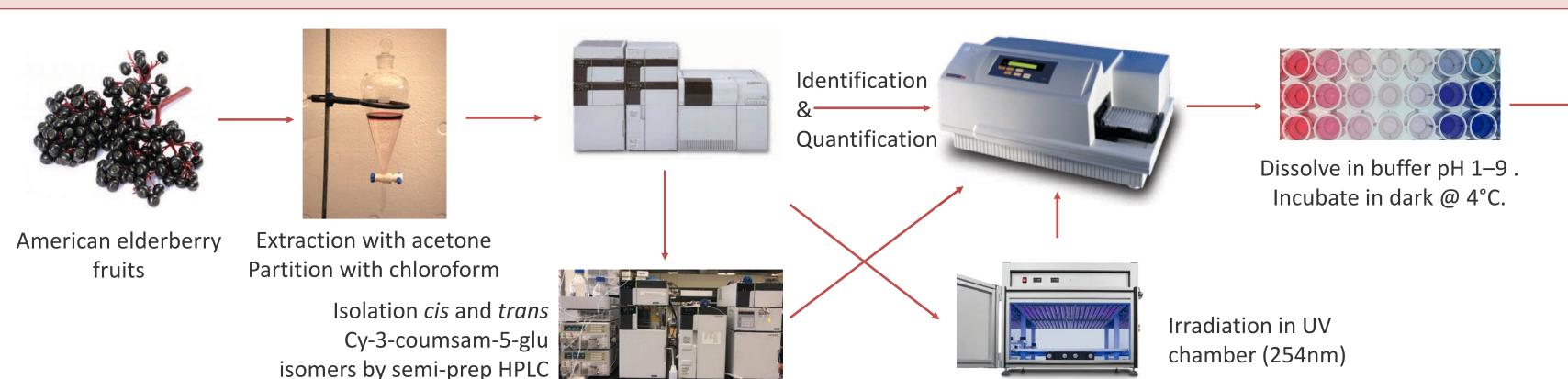

Cis- and trans-isolates were extracted from American elderberry and isolated by semi-prep HPLC. 100 to 800  $\mu$ M crude extracts or purified trans-isolates were irradiated by UV light (254nm) in acidified water, methanol or ethanol until reaching equilbrium. The conversion rate was monitored by uHPLC. Color and spectra of UV-irradiated crude extract, cis- and trans-isomers were monitored over 72hr at pH1–9.

Cis-isomers were more stable, with shaper spectra, larger  $\lambda_{\text{max}}$  and higher absorbance at all pH, with more color at pH4-6 and bluer hues at pH7-9. Trans  $\rightarrow$ cis conversion occurred in trans-isolates and crude extract with similar efficiency. A plateau was reached at trans:cis ratio 5:4 in alcohol and 10:3 in water. The conversion was faster in low anthocyanin concentration, but more cis-isomers were produced at high anthocyanin concentration. The crude extract displayed bluer hues at pH7-9 after UV irradiation.

## **INTRODUCTION**

American elderberries are a rich source of the acylated anthocyanin cy-3-sam-5-glu acylated with coumaric acid<sup>(1)</sup>.

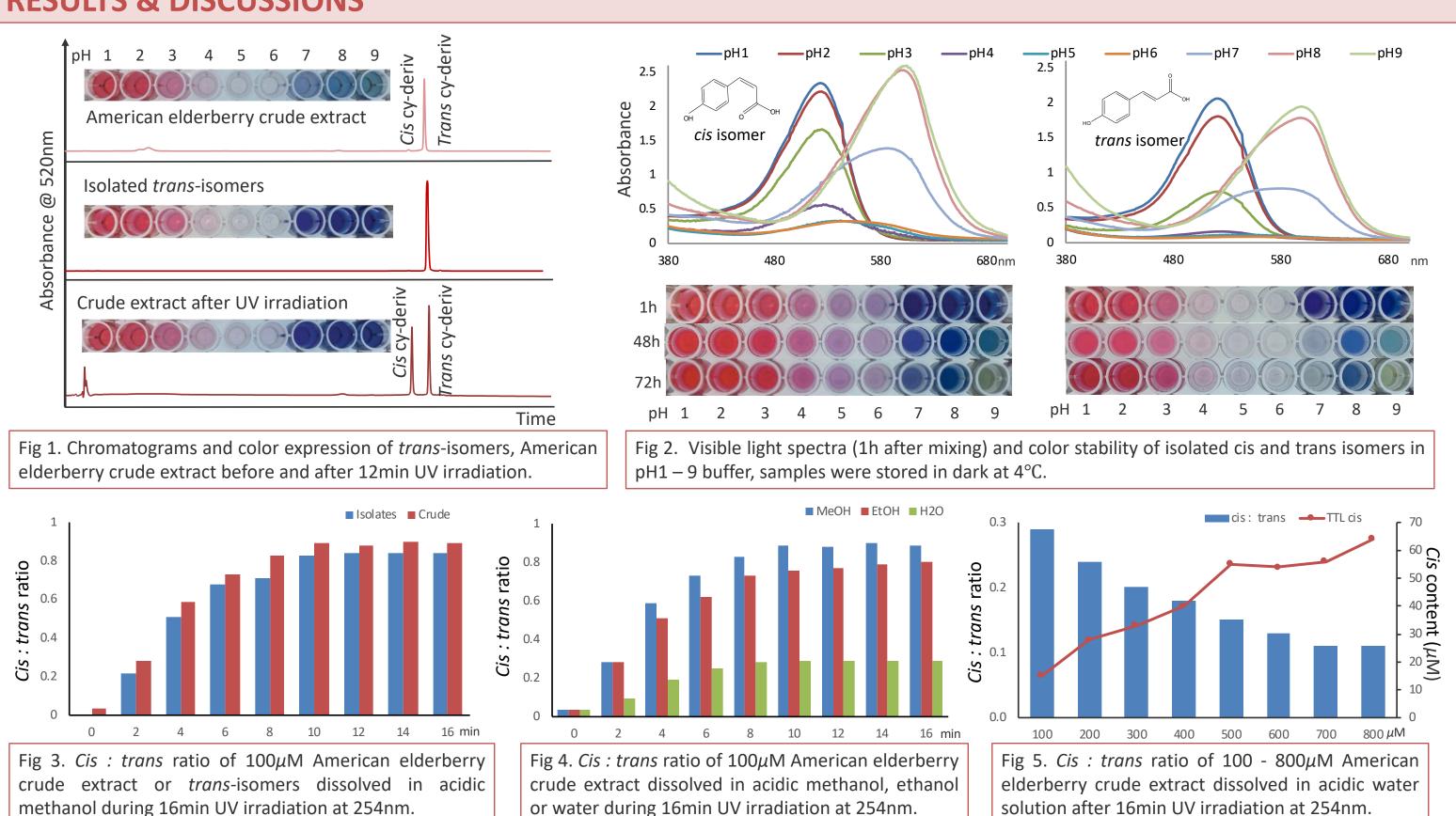
Anthocyanin acylation typically enhances its color stability due to the inter- and intra-molecular interaction<sup>(2)</sup>. The hydroxycinnamic acids are unique aromatic acyl groups: due to the existence of the double bonds in their sides chains, they have both *cis* and *trans* isomers. *P*-coumaric, caffeic, ferulic and sinapic acids are the common ones.




In nature the *trans* form is predominant, with very few ACNs from edible source acylated with *cis* isomers. The conversion between the two isomers rarely happens *in vivo*. Yet, the *trans*-isomers can be converted into their corresponding *cis* with artificial (UV light) irradiation or sunlight in methanolic solution *in vitro*<sup>(3)</sup>.

## **OBJECTIVES**

Our goal was to explore the effects of coumaric acid configuration on spectral and colorimetric properties of acylated cyanidin-derivatives and determine the effects of solvent, anthocyanin purity and concentration on the UV-induced  $trans \rightarrow cis$  conversion process.


## **MATERIALS & METHODS**



# Spectral data collected

and converted to color data by ColorbySpectra software.

## **RESULTS & DISCUSSIONS**



# REFERENCES

- 1. Lee, J, & Finn, CE. (2007). Anthocyanins and other polyphenolics in American elderberry (S.canadensis) and European elderberry (S.nigra) cultivars. JSci Food Ag (87) 2665-2675.

  2. Giusti, MM, & Wrolstad, RE (2003). Acylated anthocyanins from edible sources and their applications in food. Biochem Eng J, 14(3), 217-225.
- 3. Yoshida, K...Goto, T. (1990). Structure of anthocyanins isolated from Perilla ocimoides var. crispa Benth and their isomerization by irradiation of light. Ag Biol Chem, 54, 1745-1751.

## **DISCUSSIONS**

- **1.** American elderberry contained *cis* and *trans* acylations, rare in nature (Fig 1).
- **2.** Anthocyanin with *Cis* acylation showed higher stability, shaper spectra, larger  $\lambda_{\text{max}}$  and higher absorbance at all pH than the corresponding *trans*, with bluer hues at pH 7-9 (Fig 2). Stereochemical differences of isomers may be key for color loss at pH4-6.
- 3. Trans → cis conversion was induced byUV irradiation at 254nm and reached equilibrium in 16min (Fig 3 5).
- **4.** Trans → cis conversion happened in both elderberry crude extract and trans-isolates with similar efficiency (Fig 3).
- 5. Trans → cis conversion was more efficient in alcoholic solution (methanol or ethanol) than in the water (Fig 4).
- 6. **Trans** → **cis conversion** favored under low anthocyanin concentration, but the amount of **cis**-isomers produced was higher at high anthocyanin concentration (Fig 5).

## **CONCLUSIONS**

Crude anthocyanin extracts in ethanol at low concentration irradiated by UV light (254nm) could be an efficient way to trigger trans  $\rightarrow$  cis conversion of acylated anthocyanins. This novel process improved anthocyanins stability, and potentially producing promising anthocyanin-based colorants for the food industry.



Department of Food Science & Technology The Ohio State University, Columbus, OH 43210